Edificios modernos de los estados unidos Maria Meza

MATERIALES MODERNOS DE CONSTRUCCIÓN Con tres materiales artificiales se ha construido el mundo moderno que hoy disfrutamos.

El hormigón, el vidrio y el acero, son los tres materiales producidos en abundancia a partir de la 2da. Rev. Industrial que han cambiado nuestra forma de vivir en casas y ciudades. Gracias a estos materiales de construcción las casas que habitamos son como son hoy en día, edificaciones distintas a todo lo levantado antes en la historia de la Civilización Humana. Se usaba piedra, ladrillo y madera, como materiales principales de construcción. Esos eran materiales naturales, en cambio los nuevos materiales de construcción son artificiales, no se los encuentra tal cual en la naturaleza. Los materiales nuevos comenzaron a producirse en gran cantidad hacia la segunda mitad del Siglo XIX y han predominado en el Siglo XX dando forma a la sociedad moderna, permitieron hacer un cambio en la Humanidad. VIDRIO: El vidrio es una sustancia amorfa fabricada sobre todo a partir de sílice (SiO2) fundida a altas temperaturas con boratos o fosfatos. También se encuentra en la naturaleza, por ejemplo en la obsidiana, un material volcánico, o en los enigmáticos objetos conocidos como tectitas. El vidrio es una mezcla amorfa porque no es un sólido, si no un líquido sobre enfriado que se halla en forma vítrea en la cual las unidades moleculares, aunque están dispuestas de forma desordenada, tienen suficiente cohesión para presentar rigidez mecánica El vidrio se enfría hasta solidificarse sin que se produzca cristalización; el calentamiento puede devolverle su forma líquida. Suele ser transparente, pero también puede ser traslúcido u opaco. Su color varía según los ingredientes empleados en su fabricación. Composición y propiedades: La sílice se funde a temperaturas muy elevadas para formar vidrio. Como éste tiene un elevado punto de fusión y sufre poca contracción y dilatación con los cambios de temperatura, es adecuado para aparatos de laboratorio y objetos sometidos a choques térmicos (deformaciones debidas a cambios bruscos de temperatura), como los espejos de los telescopios. ACERO -Acero semiduro: El porcentaje de carbono es de 0,45%. Tiene una resistencia mecánica de 62-70 kg/mm2 y una dureza de 280 HB. Se templa bien, alcanzando una resistencia de 90 kg/mm2, aunque hay que tener en cuenta las deformaciones.

Aplicaciones: Ejes y elementos de máquinas, piezas bastante resistentes, cilindros de motores de explosión, transmisiones, etc.

-Acero duro: El porcentaje de carbono es de 0,55%. Tiene una resistencia mecánica de 70-75 kg/mm2, y una dureza de 200-220 HB. Templa bien en agua y en aceite, alcanzando una resistencia de 100 kg/mm2 y una dureza de 275-300 HB.

Aplicaciones: Ejes, transmisiones, tensores y piezas regularmente cargadas y de espesores no muy elevados. Para la construcción civil: Una parte importante del acero producido se dirige a la construcción civil. Dentro de este rubro pueden determinarse dos utilizaciones principales: hormigón armado y construcción en acero. La primera usa el hierro redondo como refuerzo del hormigón, trabajando el primero en general a la tracción y el segundo a la compresión. En el caso de la construcción en acero1 se usan elementos tales como perfiles unidos mediante conexiones empernadas o soldadas. Una utilización que está teniendo crecimiento importante es la construcción mixta que combina las estructuras de acero embebidas en hormigón armado ó el hormigón armado dentro de un tubo estructural. Composición química: La composición química de los aceros al carbono es compleja, además del hierro y el carbono que generalmente no supera el 1%, hay en la aleación otros elementos necesarios para su producción, tales como silicio y manganeso, y hay otros que se consideran impurezas por la dificultad de excluirlos totalmente azufre, fósforo, oxígeno, hidrógeno. El aumento del contenido de carbono en el acero eleva su resistencia a la tracción, incrementa el índice de fragilidad en frío y hace que disminuya la tenacidad y la ductilidad. -Acero dulce: El porcentaje de carbono es de 0,25%, tiene una resistencia mecánica de 48-55 kg/mm2 y una dureza de 135-160 HB. Se puede soldar con una técnica adecuada.

Aplicaciones: Piezas de resistencia media de buena tenacidad, deformación en frío, embutición, plegado, herrajes, etc.

-Acero semidulce: El porcentaje de carbono es de 0,35%. Tiene una resistencia mecánica de 55-62 kg/mm2 y una dureza de 150-170 HB. Se templa bien, alcanzando una resistencia de 80 kg/mm2 y una dureza de 215-245 HB.

Aplicaciones: Ejes, elementos de maquinaria, piezas resistentes y tenaces, pernos, tornillos, herrajes. HORMIGÓN El hormigón o concreto es el material resultante de la mezcla de cemento (u otro conglomerante) con áridos (grava, gravilla y arena) y agua.

La principal característica estructural del hormigón es que resiste muy bien los esfuerzos de compresión, pero no tiene buen comportamiento frente a otros tipos de esfuerzos (tracción, flexión, cortante, etc.), por este motivo es habitual usarlo asociado al acero, recibiendo el nombre de hormigón armado, o concreto pre-reforzado en algunos lugares; comportándose el conjunto muy favorablemente ante las diversas solicitaciones.

Su empleo es habitual en obras de arquitectura e ingeniería, tales como edificios, puentes, diques, puertos, canales, túneles, etc. Incluso en aquellas edificaciones cuya estructura principal se realiza en acero, su utilización es imprescindible para conformar la cimentación. La fibra de carbono es una fibra sintética constituida por finos filamentos de 5–10 μm de diámetro y compuesto principalmente por carbono. Cada filamento de carbono es la unión de muchas miles de fibras de carbono. Se trata de una fibra sintética porque se fabrica a partir del poliacrilonitrilo. Tiene propiedades mecánicas similares al acero y es tan ligera como la madera o el plástico. Por su dureza tiene menor resistencia al impacto que el acero. Las propiedades principales de este material compuesto son:

Elevada resistencia mecánica, con un módulo de elasticidad elevado.

Baja densidad, en comparación con otros elementos como por ejemplo el acero.

Elevado precio de producción.

Resistencia a agentes externos.

Gran capacidad de aislamiento térmico.

Resistencia a las variaciones de temperatura, conservando su forma, sólo si se utiliza matriz termoestable.

Las razones del elevado precio de los materiales realizados con fibra de carbono se debe a varios factores:

El refuerzo, fibra, es un polímero sintético que requiere un caro y largo proceso de producción. Este proceso se realiza a alta temperatura -entre 1100 y 2500 °C- en atmósfera de hidrógeno durante semanas o incluso meses dependiendo de la calidad que se desee obtener ya que pueden realizarse procesos para mejorar algunas de sus características una vez se ha obtenido la fibra.

Tiene muchas aplicaciones en la industria aeronáutica y automovilística, al igual que en barcos y en bicicletas, donde sus propiedades mecánicas y ligereza son muy importantes. También se está haciendo cada vez más común en otros artículos de consumo como patines en línea, raquetas de tenis, edificios, ordenadores portátiles, trípodes y cañas de pesca e incluso en joyería. FIBRA DE CARBONO Termoarcilla Una termo arcilla es un bloque cerámico de baja densidad y mayor grosor que el ladrillo convencional, que se utiliza como alternativa a otros materiales de construcción más comunes, como los ladrillos o los bloques de hormigón.

La porosidad del material, junto con su geometría, permiten conseguir muros de una sola hoja con similares prestaciones que los muros compuestos por varias capas.

La termo arcilla ahorra en medios auxiliares, ya que no se necesita encofrado y puede ser abordada por un auto constructor. Bioblock Arlita El bloque de BIOBLOCK es un material constructivo que está realizado en arcilla natural, está diseñado de tal manera que consigue una alta resistencia a la compresión. Este bloque cerámico unido al granulado de corcho consigue un alto coeficiente aislante. Arcilla expandida granulada muy ligera con alto poder de aislamiento, se utiliza principalmente para aislamiento y formación de pendientes, aislamientos de sobre techos, relleno de cámaras de aire, para hormigones y morteros, rehabilitación de forjados, etc. Madera OSB: (Oriented Strand Board) Se utiliza mayoritariamente para cerramientos verticales y de cubiertas. Es un tablero de virutas orientadas colocadas en capas en diferentes direcciones, consiguiendo una máxima resistencia a la flexión. Se combina con el corcho, para el aislamiento de techos y suelos.

Cables para instalaciones eléctricas: Los cables Afumex no llevan PVC y son ideales para instalaciones eléctricas en todo tipo de locales (edificios de oficinas, escuelas, hospitales, naves industriales,...). Entre sus características cabe destacar que es un cable libre de halógenos, tiene una reducida emisión de gases tóxicos y una baja emisión de de gases corrosivos, y evita la propagación de la llama y del incendio.

humos opacos, nula emisión de gases corrosivos. Cable afumex ARENA FINA La arena fina es un conjunto de partículas de rocas disgregadas, se denomina arena fina al material compuesto de partículas cuyo tamaño varía entre 0,063 y 2 mm. Características:

Peso especifico2.60 gm/cm3

Peso unitario1.649,13 (kg/m3)

Peso unitario suelto1.464,24 (kg/m3)

Vacíos35,82 %

Absorción0,75 %

Contenido de materia orgánica5 %

Pasa el tamiz 20016,01 %

Modulo de finura1,79 % Cartón yeso o Drywal El cartón yeso o tablero de yeso es un material de construcción utilizado para la ejecución de tabiques interiores y revestimientos detechos y paredes. Se suele utilizar en forma de placas, paneles o tableros industrializados. Consiste en una placa de yeso laminado entre dos capas de cartón, por lo que sus componentes son generalmente yeso y celulosa. Características

Las placas de cartón yeso se fabrican en una anchura estandarizada 1.22m (4 pies) y diferentes longitudes de 2.44 m (8 pies), 3.05 m (10 pies) y 3.66 m (12 pies). Los fabricantes puede cambiar la longitud de la placa a las dimensiones del cliente para pedidos suficientemente grandes. Se comercializan en diferentes espesores (3/8”, 1/2", 5/8” o hasta 1”), aunque para grandes espesores es habitual superponer varias placas de pequeño espesor, colocadas a matajunta.

Además de las placas de cartón yeso para uso normal, existen placas modificadas para usos especiales.

Resistencia al fuego

El cartón yeso no es inflamable, es decir no se incendia aún expuesto al fuego directo. Está hecho de sulfato de calcio hidratado (CaSO4 + H2O) y otros compuestos. Al exponerse al fuego, el sulfato de calcio pierde las moléculas de agua por evaporación, retardando la propagación del fuego por varios minutos. Al secarse o deshidratarse el sulfato de calcio se desintegra (craquela) y la placa se desmorona permitiendo finalmente el paso del fuego al otro lado del tabique.

Necesita ser instalado correctamente para servir de barrera contra el fuego pues cualquier perforación o espacio pequeño permitirá el paso del fuego aun cuando la placa no se haya desintegrado.

Una placa más gruesa resiste más tiempo el embate del fuego que otra del mismo tipo pero más delgada. Dos placas instaladas una sobre la otra también ofrecen mayor resistencia al fuego, en estos casos es recomendable que los empalmes estén alternados para ofrecer mayor resistencia.

Existen versiones especiales fabricadas con compuestos que resisten más tiempo al fuego.

Aislamiento acústico

Las placas de yeso tienen una masa muy reducida, por lo que por sí solas no proporcionan un gran aislamiento acústico. Este aislamiento se suele obtener mediante la colocación de un material absorbente colocado en el interior de la cámara del tabique, o bien entre la placa de trasdosado y el elemento de soporte.

El sonido se propaga a través de materiales sólidos como pueden ser estructuras metálicas que soportan las placas o a través de los huecos que quedan sobre los plafones. Por lo tanto es importante que el tratamiento anti-sonido sea un proyecto conjunto de paredes, estructuras y techos para tener una mayor efectividad. Aislamiento térmico

Las placas de yeso por si solas no son buenas aisladoras de temperatura. Debido a su espesor delgado, el calor o frío fácilmente penetra de un lado al otro la placa de yeso resultando en temperaturas incomodas en el interior del espacio construido. Para obtener un buen aislamiento térmico, es necesario recubrir el interior de los muros o techos con aislamiento térmico de fibra de vidrio, placas sólidas de espuma u otros materiales.

Resistencia a la humedad

Existen placas de yeso resistentes a la humedad, que se emplean en locales húmedos como baños, cuartos de limpieza, cocinas, etc, en los que puede haber zonas expuestas a salpicaduras ocasionales. Las placas de yeso resistentes a la humedad están fabricadas con papel tratado que retarda la absorción del agua y el crecimiento de hongos. Además el núcleo de la placa contiene aditivos especiales para que no se manchen ni se desintegran. Las placas están diseñadas para resistir salpicaduras ocasionales de agua pero no están recomendadas para estar expuestas a la lluvia ni en contacto directo o constante con agua o vapor como regaderas, duchas o saunas.

Credits:

Created with images by Romero Trust - "El Salvador 13 11 2013 F Iglesia del Rosario (8)"

Report Abuse

If you feel that this video content violates the Adobe Terms of Use, you may report this content by filling out this quick form.

To report a Copyright Violation, please follow Section 17 in the Terms of Use.